PERIOPERATIVE MANAGEMENT OF PATIENTS WITH SEVERE SEPSIS

พ.ต.ต.นพ.ธรรมศักดิ์ ทวิชศรี หน่วยเวชบำบัดวิกฤต ฝ่ายวิสัญญีวิทยา โรงพยาบาลจุฬาลงกรณ์

Epidemiology

Severe sepsis occurs in 1-2% of all hospitalizations and accounts for as much as 25% of intensive care unit (ICU) bed utilization

□ It is common in elderly, immunocompromised, and critically ill patients and is a major cause of death in ICUs worldwide

The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546–54

	Infective causes	Non-infective causes
Causes of SIRS	CNS infections	Severe trauma
	CVS infections	Haemorrhage
	Respiratory infections	Complication of surgery
Infections are common	Renal infections	Complicated aortic aneurysn
& amenable to treatment	GIT infections	Myocardial infarction
	Skin and soft tissue infections	Pulmonary embolism
	Bone and joint infections	Cardiac tamponade
actively sought&controled		Subarachnoid haemorrhage
		Burns
		Acute pancreatitis
		Drug overdose/toxicity
		Diabetic ketoacidosis
		Adrenal insufficiency
		Anaphylaxis

Preoperative assessment

- It is prudent to examine patients systematically looking for a source of infection
 - \rightarrow self-evident (e.g. trauma, burns)
 - → difficult to identify (e.g. empyema of the gall bladder, pancreatitis)
- □ The examination should focus on...
 - The severity of SIRS
 - The state of intravascular hydration
 - The presence of shock or multi-organ dysfunction
 - The adequacy of hemodynamic resuscitation

Antibiotic therapy

- Appropriate samples should be obtained for culture then **antibiotics** should be started as early as possible
- □ The choice of agents should be based on..
 - clinical history
 - physical examination
 - likely pathogen(s)
 - optimal penetration of anti-microbial drugs into infected tissues
 - the local pattern of sensitivity to anti-microbial agents

The first 6 h of resuscitation of septic patients, the so-called 'golden hours', are crucial and frequently coincide with the time for 'emergency surgery'

Clinical parameter	Goal
Central venous pressure	8–12 mm Hg (\geq 8 mm Hg in spontaneously breathing patient, \geq 12 mm Hg in ventilated patients)
Mean arterial pressure	Between 65 and 90 mm Hg
Central venous oxygen saturation	\geq 70 mm Hg
Urine output	\geq 0.5 ml kg ⁻¹ h ⁻¹
Haematocrit	≥30%

Hemodynamic resuscitation

- Colloid with pentastarch therapy was associated with higher rates of acute renal failure and renal replacement therapy than Ringer's lactate
- Vasopressor support with norepinephrine may be considered even before optimal i.v. fluid loading has been achieved
- Inotropes are added to volume resuscitation and vasopressors, if there is evidence of continued low cardiac output despite adequate fluid resuscitation

Resuscitation efforts should be continued as long as haemodynamic improvement

Diagnostic imaging

 If diagnostic imaging studies are considered appropriate, it is important that all other therapeutic measures are continued in a comprehensive manner

Source control

- The immediate goal is to achieve adequate control of the source of infection with the least physiological embarrassment
- Source control intervention may cause further complications
- In some patients, immediate surgery or within 1–2 h of presentation (e.g. upper airway infections, necrotizing fasciitis) is lifesaving

Postoperative management of patients with severe sepsis

- Ongoing infusions of vasopressor medication should be adjusted to match the present intravascular volume and the new mechanical ventilator settings
- Minimizing ventilation-induced volutrauma and barotraumas to the lungs → low-pressure settings
- Antimicrobial therapy, which was started before operation, should be continued in the ICU

Postoperative management of patients with severe sepsis

Nutrition

- Enteral nutrition via a nasogastric tube is the best choice to maintain enterocyte integrity and nourish the patient
- Stress ulcer prophylaxis and antiemetic drugs are also prescribed
- Total parenteral nutrition (TPN) should be considered if there is a surgical contraindication to enteral nutrition
- Patients may become rapidly hypoglycaemic if TPN or enteral nutrition is stopped during the perioperative period

Monitoring of sedation

Table 1. Ramsay sedation score criteria

- 1. Patient anxious and agitated or restless or both
- 2. Patient cooperative, oriented, and tranquil
- 3. Patient responds to commands only

4. Patient asleep, shows brisk response to light glabellar tap or loud auditory stimulus

5. Patient asleep, shows sluggish response to light glabellar tap or loud auditory stimulus

6. Patient asleep, shows no response to light glabellar tap or loud auditory stimulus

Adjust the sedative dose to achieve adequate but not excessive sedation

Glucagon & Insulin response to injury can lead to major changes in glucose metabolism →close monitoring of blood glucose, electrolytes, & acid-base status

Control of blood sugar has been shown to improve outcome in surgical ICU patients

THIRD-SPACE FLUID SEQUESTRATION

Extravascular fluid may accumulate in the interstitial & intracellular spaces, as well as in the retroperitoneal space & gut during intraabdominal manipulation

not easily measured by clinical
close titration of fluid balance is crucial
central hemodynamic monitoring may be required

HYPERCOAGULABLE STATE

Damage Control

Novel management strategy designed to abbreviate operative times (avoid hypothermia, acidosis, and coagulopathy) for injured patients with nearly exsanguinating hemorrhage

An era of new management problems for the saved patients

Intra Abdominal Hypertension (IAH)

Intra-Abdominal Pressure & Intra-Abdominal Hypertension

- Normal intraabdominal pressure (IAP)
 - is 5 7 mmHg
- The upper limit of IAP is generally accepted to be 12 mm Hg (obesity & COPD)
- □ IAH may be divided into 4 grades
 - grade 1 (12-15 mmHg)
 - grade II (16-20 mmHg)
 - grade III (20–24 mmHg) \rightarrow ± ARF
 - grade IV (>25 mmHg)

Abdominal Compartment Syndrome

A sustained IAP > 20 mm Hg

- & abdominal perfusion pressure < 60 mm Hg
- + a new & attributable organ dysfunction or failure

	GFR criteria	Urine output criteria		
Risk	Serum creatinine increased 1.5 times	<0.5 mL kg ⁻¹ h ⁻¹ for 6 h		
Injury	Serum creatinine increased 2.0 times	<0.5 mL kg ⁻¹ h ⁻¹ for 12 h		
Failure	Serum creatinine increased 3.0 times or creatinine=355 μ mol/L when there was an acute rise of >44 μ mol/L	<0·3 mL kg ⁻¹ h ⁻¹ for 24 h or anuria for 12 h		
Loss	Persistent acute renal failure; complete loss of kidney function for longer than 4 weeks			
End-stage End-stage renal disease for longer than 3 months renal disease GFR=glomerular filtration rate.				
able 1: RIFLE classification ⁴ Bellomo R, Ronco C, Kellum JA:Crit Care 2004; 8:204–212				
Once IAH and the ACS have led to oliguria,				

The instructor asks the new nurse to stat call the doctor

Tachypnea

- Decreased oxygen saturation
- Tachycardia
- •Hypotension
- •Changes in conscious state

if abnormal physiology is identified & corrected, outcome may improve

Oxygenation failure

- □ Altered conciousness
- □ Arrhythmia, BP
- Diaphoresis
- Cyanosis
- Refractory hypoxemia
 - **FiO**2 > 0.5 and SaO2 < 90%

Ventilatory failure

Respiratory distress

บ่นเหนื่อย ร่วมกับ vital signs change,พูดไม่ได้

- Impending failure
 - **RR** > 35 /min + respiratory paradox ,alternan
- □ Acute CO₂ retention
 - **□ PaCO**2 > 50 **mmHg** ร่วมกับ **pH** < 7.3
- Bradyspnea or respiratory arrest

Subjective Mask comfort Tolerance of ventilator settings Respiratory distress Physical findings		
Respiratory rate Other vital signs Accessory muscle use Abdominal paradox Ventilator parameters	Monitoring of NIV for ARF	
Air leaking Adequacy of pressure support Adequacy of PEEP Tidal volume (5–7 mL/kg) <u>Patient-ven</u> tilator synchrony		
Gas exchange Continuous oximetry (until stable) ABGs, baseline and 1–2 hrs, then as indicated Location Usually ICU or respiratory care unit to start General ward may be OK if patient stable Depends on monitoring needs of patients and		
monitoring capabilities of unit	Crit Care Med 2007; 35:2402-2407	

Atelectasis occurs when alveolar closing volume rises above FRC (is rarely due to proximal airway obstruction by mucus)

Bronchoscopy for atelectasis

Critically ill patients with acute whole lung, lobar, or segmental atelectasis without air bronchograms who are unable to maintain airway hygiene independently and remain symptomatic after 24 hours of aggressive chest physiotherapy(Q 4 hrs)

Strength of the Evidence for Specific Interventions To Reduce the Risk for PPCs

Risk Reduction Strategy	Strength of Evidence*
Postoperative lung expansion modalities	A good evidence
Selective postoperative nasogastric decompression	^B _R fair evidence
Laparoscopic (vs. open) operation	_C may reduce PPCs
Smoking cessation Intraoperative neuraxial blockade	insufficient
Postoperative epidural analgesia Immunonutrition	evidence
Routine total parenteral or enteral nutrition† Right-heart catheterization	D not reduce PPCs
	Ann Intern Med. 2006;144:596-608

The quality of patient care in the ICU

Protocols

 enhancing the efficiency, safety, & efficacy of care; enabling research; & facilitating education

Checklists

- routinely used to improve safety

Physicians' rounds

- daily rounds at the bedside by intensivists may result in better outcomes

Fast Hug approach

Table 1. The seven components of the Fast Hug approach

Component	Consideration for Intensive Care Unit (ICU) Team	
Feeding	Can the patient be fed orally, if not enterally? If not, should we	
	start parenteral feeding?	
Analgesia	The patient should not suffer pain, but excessive analgesia should	
	be avoided	
Sedation	The patient should not experience discomfort, but excessive	
	sedation should be avoided; "calm, comfortable, collaborative"	
	is typically the best level	
Thromboembolic prevention	Should we give low-molecular-weight heparin or use mechanical	
	adjuncts?	
Head of the bed elevated	Optimally, 30° to 45°, unless contraindications (e.g., threatened	
	cerebral perfusion pressure)	
Stress Ulcer prophylaxis	Usually H ₂ antagonists; sometimes proton pump inhibitors	
Glucose control	Within limits defined in each ICU	
Useful to anybody working in an ICU		

Jean-Louis Vincent :Crit Care Med 2005; 33:1225–1229

Goal :to develop objective measures of both knowledge-based skill and teamwork performance in the management of sepsis

